Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(2): e13313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470221

RESUMO

Polyphenols are well documented against the inhibition of foodborne toxicants in meat, such as heterocyclic amines, Maillard's reaction products, and protein oxidation, by means of their radical scavenging ability, metal chelation, antioxidant properties, and ability to form protein-polyphenol complexes (PPCs). However, their thermal stability, low polarity, degree of dispersion and polymerization, reactivity, solubility, gel forming properties, low bioaccessibility index during digestion, and negative impact on sensory properties are all questionable at oil-in-water interface. This paper aims to review the possibility and efficacy of polyphenols against the inhibition of mutagenic and carcinogenic oxidative products in thermally processed meat. The major findings revealed that structure of polyphenols, for example, molecular size, no of substituted carbons, hydroxyl groups and their position, sufficient size to occupy reacting sites, and ability to form quinones, are the main technical points that affect their reactivity in order to form PPCs. Following a discussion of the future of polyphenols in meat-based products, this paper offers intervention strategies, such as the combined use of food additives and hydrocolloids, processing techniques, precursors, and structure-binding relationships, which can react synergistically with polyphenols to improve their effectiveness during intensive thermal processing. This comprehensive review serves as a valuable source for food scientists, providing insights and recommendations for the appropriate use of polyphenols in meat-based products.


Assuntos
Produtos da Carne , Carne , Aminas , Antioxidantes , Carcinógenos
2.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338480

RESUMO

To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.


Assuntos
Eucommiaceae , Flavonoides , Flavonoides/química , Solventes/química , Ácido Clorogênico/química , Eucommiaceae/química , Solventes Eutéticos Profundos , Extratos Vegetais/química , Água , Iridoides
3.
ACS Omega ; 9(1): 1723-1737, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222590

RESUMO

Aucubin (AU) is an active ingredient that exerts strong antioxidant and anti-inflammatory effects in the treatment of several diseases. In order to improve the efficiency of resource utilization of traditional biomass waste, Eucommia ulmoides seed-draff (EUSD) waste biomass was used as the raw material, and a series of deep eutectic solvents were selected to evaluate the extraction efficiency of aucubin from EUSD. A response surface experiment was designed based on a single-factor experiment to optimize the extract conditions. The results showed that the best conditions for aucubin extraction were an HBD-HBA ratio of 2.18, a liquid-solid ratio of 46.92 mL/g, a water percentage of 37.95%, a temperature of 321.03 K, and an extraction time of 59.55 min. The maximum amount of aucubin was 156.4 mg/g, which was consistent with the theoretical value (156.8 mg/g). Then, the performance of 12 resins for adsorption and desorption was contrasted. The results revealed that HPD950 resin exhibited the best performance, with an adsorption capacity of 95.2% and a desorption capacity of 94.3%. Additionally, the pseudo-second-order model provided the best match to the kinetics data, the Langmuir model provided the best fit to the isotherm data, and adsorption was a beneficial, spontaneous, exothermic, and physical process. In the recyclability test, the HPD950 resin had great potential and excellent sustainability in aucubin recovery. In the antioxidant activity study, the aucubin extract exerted a strong antioxidant ability with scavenging capabilities for four free radicals. Furthermore, the antifungal activity study found that the aucubin extract exhibited a good antifungal effect against 5 tested pathogens. The research results can provide a theoretical basis for the extraction of high-value components from waste biomass by deep eutectic solvent and a certain application value for the development and utilization of natural aucubin products.

4.
Polymers (Basel) ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276689

RESUMO

Infected bone defects represent a common clinical condition involving bone tissue, often necessitating surgical intervention and antibiotic therapy. However, conventional treatment methods face obstacles such as antibiotic resistance and susceptibility to postoperative infections. Hydrogels show great potential for application in the field of tissue engineering due to their advantageous biocompatibility, unique mechanical properties, exceptional processability, and degradability. Recent interest has surged in employing hydrogels as a novel therapeutic intervention for infected bone repair. This article aims to comprehensively review the existing literature on the anti-microbial and osteogenic approaches utilized by hydrogels in repairing infected bones, encompassing their fabrication techniques, biocompatibility, antimicrobial efficacy, and biological activities. Additionally, the potential opportunities and obstacles in their practical implementation will be explored. Lastly, the limitations presently encountered and the prospective avenues for further investigation in the realm of hydrogel materials for the management of infected bone defects will be deliberated. This review provides a theoretical foundation and advanced design strategies for the application of hydrogel materials in the treatment of infected bone defects.

5.
Front Nutr ; 10: 1290221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024387

RESUMO

This study aimed to investigate the influence of different ratios of taro slices (TS) on the nutritional quality, sensory quality, and shelf life of Chinese pickled and steamed pork belly (CPSPB). The study examined various aspects of CPSPB, including its proximate components, fat oxidation, fatty acid composition, protein hydrolysis, oxidation reaction, and induction period (IP). Additionally, the sensory quality and texture analysis were compared simultaneously. The results showed that the addition of TS to CPSPB significantly improved water and lipid loss (p < 0.05), increased the unsaturated/saturated ratio of fatty acids, and reduced lipid and protein oxidation. Additionally, the incorporation of TS extended the IP and enhanced the shelf life of CPSPB. Particularly, the addition of a specific amount of TS (60%) to CPSPB resulted in the highest organoleptic quality. Therefore, these results emphasize the positive impact of TS on the overall quality of CPSPB, highlighting its potential to enhance the nutritional value, sensory attributes, and shelf life.

6.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3520-3529, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37622377

RESUMO

"Biochemical Engineering Experiment" is a compulsory curriculum for the concentrated practical teaching of biotechnology majors in Hunan University of Science and Engineering. It is also an experimental curriculum for improving the overall quality of bioengineering students under the context of "Emerging Engineering Education". The course includes comprehensive experiments and designable experiments, and the contents of which are designed by combining the local characteristic resources of Yongzhou, the research platform and the characteristics of the talents with engineering background. In the teaching practice, methods such as heuristic teaching, research cases-embedded teaching and interactive teaching are comprehensively used to boost students' interest in learning and stimulate their innovative thinking and application capability. Through curriculum examination and post-class investigation, it was found that the students' abilities of knowledge transfer and application were significantly improved, and they achieved excellent performances in discipline competitions and approved project proposals. The practice and continuous improvement of this course may facilitate fostering high-level innovative and application-oriented talents of biotechnology majors.


Assuntos
Currículo , Estudantes , Humanos , Aprendizagem , Bioengenharia , Engenharia Biomédica
7.
Int J Biol Macromol ; 233: 123532, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740110

RESUMO

There are several factors that contribute to the mortality of people who suffer from unmanageable bleeding. Therefore, the development of rapid hemostatic materials is necessary. Herein, novel rapid hemostatic composite sponges were developed by incorporation of kaolin (K) into carboxymethyl chitosan (CMCS)/sodium alginate (SA) via a combination of methods that includes ionic crosslinking, polyelectrolyte action, and freeze-drying. The CMCS/SA-K composite sponges were cross-linked with calcium ions provided by a sustained-release system consisting of D-gluconolactone (GDL) and Ca-EDTA, and the hemostatic ability of the sponges was enhanced by loading the inorganic hemostatic agent-kaolin (K). It was demonstrated that the CMCS/SA-K composite sponges had a good porous structure and water absorption properties, excellent mechanical properties, outstanding biodegradability, and biocompatibility. Simultaneously, they exhibited rapid hemostatic properties, both in vitro and in vivo. Significantly, the hemostatic time of the CMCS/SA-K60 sponge was improved by 82.76 %, 191.82 %, and 153.05 %, compared with those of commercially available gelatin sponges in the rat tail amputation, femoral vein, and liver injury hemorrhage models respectively, indicating that its hemostatic ability was superior to that of commercially available hemostatic materials. Therefore, CMCS/SA-K composite sponges show great promise for rapid hemostasis.


Assuntos
Quitosana , Hemostáticos , Ratos , Animais , Quitosana/química , Caulim/química , Alginatos/química , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Hemorragia/tratamento farmacológico
8.
Macromol Biosci ; 23(4): e2200514, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662610

RESUMO

Bacterial infections of the wound surface can be painful for patients, and traditional dressings do not effectively address this problem. In this study, an antimicrobial wound dressing is prepared using a novel antimicrobial peptide, HX-12C. This hydrogel system is based on the natural biomaterials sodium alginate and gelatin, utilizing calcium carbonate as a source of Ca2+ , and ionic cross-linking is facilitated by lowering the solution pH. The resulting sodium alginate/gelatin HX-12C-loaded hydrogel (CaAGEAM) has good mechanical and adhesion properties, biocompatibility and in vitro degradability. Its extraordinary antibacterial efficacy (>98%) is verified by an antibacterial experiment. More importantly, in vivo experiments further demonstrate its healing-promotion effect, with a 95% wound healing rate by day 9. Tissue staining demonstrates that the hydrogel containing antimicrobial peptides is effective in suppressing inflammation. The dressing promotes wound healing by stimulating the deposition of skin appendages and collagen. The results of this study suggest that composite hydrogels containing antimicrobial peptides are a promising new type of dressing to promote the healing of infected wounds.


Assuntos
Gelatina , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Gelatina/farmacologia , Gelatina/química , Peptídeos Antimicrobianos , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Alginatos/farmacologia , Alginatos/química
9.
Int J Biol Macromol ; 231: 123209, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639078

RESUMO

Chitosan (CS) films were developed incorporating peptide HX-12C. The films were studied to determine their microstructures, physical properties, release properties of peptide HX-12C and functional properties. The results indicated that there may be hydrogen bonding interactions between CS and peptide HX-12C, thereby creating a homogeneous internal microstructure and lower crystallinity (10.8-12.8 %). Compared with CS film, CS-HX-12C films displayed lower light transmission, MC (20.8-19.9 %), WVP (8.82-8.59 × 10-11·g·m-1·s-1·Pa-1), OTR (0.015-0.037 cc/(m2.day)) and higher WS (15.7-32.4 %) values. Moreover, controlled-release experiments showed that pH, ionic strength and temperature could all significantly affect the release of peptide HX-12C from the films. Finally, the increase of pH value and TVC and lipid oxidation of fresh pork were delayed due to the treatment with CS-2%HX-12C film. However, incorporating peptide HX-12C into CS films did not improve the mechanical properties of the films and their effects against protein oxidation. Our results suggest that the CS-based antimicrobial packaging films integrated with peptide HX-12C exhibit the potential for fresh pork preservation.


Assuntos
Quitosana , Carne de Porco , Carne Vermelha , Animais , Suínos , Quitosana/química , Embalagem de Alimentos/métodos , Peptídeos Antimicrobianos
10.
Eur J Pharm Sci ; 181: 106363, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529161

RESUMO

Among other health related issues, the rising concerns on drug resistance led to look for alternative pharmaceutical drugs that are effective both against infectious and noninfectious diseases. Antimicrobial peptides (AMPs) emerged as potential therapeutic molecule with wide range of applications. With their limitations, AMPs have gained reputable attentions in research as well as in the pharmaceutical industry. This review highlighted the historical background, research trends, technological advancements, challenges, and future perspectives in the development and applications of peptide drugs. Some vital questions related with the need for pharmaceutical production, factors for the slow and steady journey, the importance of oral bioavailability, and the drug resistance possibilities of AMPs were raised and addressed accordingly. Therefore, the current study is believed to provide a profound understanding in the past and current scenarios and future directions on the therapeutic impacts of peptide drugs.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Doenças Transmissíveis/tratamento farmacológico
11.
Int J Biol Macromol ; 225: 266-276, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336155

RESUMO

In this work, a biomass composite material (CS@NC@PA-Na) was prepared from chitosan (CS), nano-cellulose (NC) and sodium phytate (PA-Na). The prepared products were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS) and X-ray diffraction (XRD). The fire/water safety and antimicrobial properties of the CS@NC@PA-Na were fully studied. The results indicated CS@NC@PA-Na (50 mg) could effectively reduce the concentration of methyl orange by 85 % under 30 min adsorption. Meanwhile, only 5 wt% CS@NC@PA-Na could increase the limiting oxygen index (LOI) value of epoxy resin composite from 24.5 to 30.1 %, and decrease the peak heat/smoke release rate by 29.5 and 33.3 %, respectively. Moreover, CS@NC@PA-Na also exhibited excellent antibacterial effect. This work provides an efficient, feasible and eco-friendly route for large-scale production of multi-functional CS-based biomass materials that could be used in the fields of fire safety and environmental conservation.


Assuntos
Quitosana , Purificação da Água , Quitosana/farmacologia , Quitosana/química , Biomassa , Celulose , Antibacterianos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Heliyon ; 8(10): e10765, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36267368

RESUMO

Aucubin (AU) is an active ingredient exerting strong antioxidant and anti-inflammatory effects in treating several diseases. This study evaluated the extraction of AU from Eucommia ulmoides seed-draff (EUSD) waste biomass using a series of solvents (methanol, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol and cyclohexane) assisted with microwave and ultrasound, and proposed the optimized method for extraction. Five factors were investigated by Box-Behnken design (BBD) and response surface methodology (RSM). The optimized extraction conditions were as follows: liquid-solid ratio of 46.37 mL/g, methanol percentage of 89.56%, ultrasonic (extraction) time of 59.95 min, microwave power of 306.73 W, and microwave (extraction) time of 18.93 s. To this end, the AU extraction reached the maximum value (149.1 mg/g), which was consistent with the theoretical value (149.3 mg/g). Furthermore, the kinetics of extraction process were investigated by mathematic modeling. The extraction process analysis was also explored by 1H nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and COSMOtherm program. This study found out that methanol provided better extraction efficiency than the conventional solvents (water, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol, cyclohexane) due to possible interactions by the formation of hydrogen bond between AU and methanol, and ultrasound and microwave could significantly enhance mass transfer, which exhibited higher extraction efficiency and lower energy consumptions (149.1 mg/g and 0.102 kW·h vs. 73.4 mg/g and 0.700 kW·h for Soxhlet extraction). In the antibacterial activity study, the AU extract exerted strong antibacterial ability against 4 tested pathogens, and the antibacterial effect followed the order of: Staphylococcus aureus (35.9 ± 1.32 mm) > Escherichia coli (30.7 ± 1.38 mm) > Bacillus subtilis (20.5 ± 1.36 mm) > Salmonella (15.9 ± 1.39 mm) with the AU concentration of 40 mg/mL. Therefore, the development of this study will help to deepen the further understanding of natural product extraction by methanol-based ultrasonic and microwave, and has certain application value for the development and utilization of natural iridoid glycosides product.

13.
Front Pharmacol ; 11: 1208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903706

RESUMO

Multidrug resistance (MDR) of tumor cells to chemotherapeutic agents is the main reason for the failure of cancer chemotherapy. Overexpression of ABCB1 transporter that actively pumps various drugs out of the cells has been considered a major contributing factor for MDR. Over the past decade, many antimicrobial peptides with antitumor activity have been identified or synthesized, and some antitumor peptides have entered the clinical practice. In this study, we report that peptide HX-12C has the effect of reversing ABCB1-mediated chemotherapy resistance. In ABCB1-overexpressing cells, nontoxic dose of peptide HX-12C inhibited drug resistance and increased the effective intracellular concentration of paclitaxel and other ABCB1 substrate drugs. The mechanism study showed that peptide HX-12C stimulated ABCB1 ATPase activity without changing the expression level and localization patterns of ABCB1. Molecular docking predicted the binding modes between peptide HX-12C and ABCB1. Overall, we found that peptide HX-12C reverses ABCB1-mediated MDR through interacting with ABCB1 and blocking its function without affecting the transporter's expression and cellular localization. Our findings suggest that this antimicrobial peptide may be used as a novel prospective cancer therapeutic strategy in combination with conventional anticancer agents.

14.
Cancers (Basel) ; 12(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707710

RESUMO

The overexpression of ATP-binding cassette (ABC) transporters is a common cause of multidrug resistance (MDR) in cancers. The intracellular drug concentration of cancer cells can be decreased relative to their normal cell counterparts due to increased expression of ABC transporters acting as efflux pumps of anticancer drugs. Over the past decades, antimicrobial peptides have been investigated as a new generation of anticancer drugs and some of them were reported to have interactions with ABC transporters. In this article, we investigated several novel antimicrobial peptides to see if they could sensitize ABCB1-overexpressing cells to the anticancer drugs paclitaxel and doxorubicin, which are transported by ABCB1. It was found that peptide XH-14C increased the intracellular accumulation of ABCB1 substrate paclitaxel, which demonstrated that XH-14C could reverse ABCB1-mediated MDR. Furthermore, XH-14C could stimulate the ATPase activity of ABCB1 and the molecular dynamic simulation revealed a stable binding pose of XH-14C-ABCB1 complex. There was no change on the expression level or the location of ABCB1 transporter with the treatment of XH-14C. Our results suggest that XH-14C in combination with conventional anticancer agents could be used as a novel strategy for cancer treatment.

15.
Appl Microbiol Biotechnol ; 104(11): 4757-4770, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291487

RESUMO

Ceaseless growth in human population led to high demand in everything. Currently, the world largely depends on petroleum-based "all material synthesis" scheme. On the other hand, depletion of fossil-based resources and their huge impact on environmental pollution have forced us to search for sustainable and eco-friendly alternative resources. In this context, the notion to utilize waste biomass could possibly provide environmental and economic benefits. This study was carefully designed to critically review state of the art in the transformation of waste biomass into value-added products. Even though extensive reviews on biomass utilization have been published in the past few years, the current study basically focused on new trends and prospective in this area. Here, global biomass potential, research developments and practices, novel biomass transformation approaches, and future perspectives were broadly discussed. More importantly, in addition to revising published researches, already implemented and ongoing large-scale projects on valorization of waste biomass have been assessed. Therefore, this study is believed to give crucial information on the current status and future direction of waste biomass utilization so as to accomplish the quest towards green economy.Key Points • Huge biomass potential and dramatically increase in R&D trends on waste biomass.• Selection of appropriate waste biomass valorization techniques. • Development of efficient and feasible waste biomass transformation technology. • Coproduction of low-value, high-volume and high-value, low volume products.


Assuntos
Biomassa , Biotecnologia/métodos , Biotransformação , Resíduos , Biocombustíveis , Biotecnologia/tendências , Pesquisa/tendências
16.
Drug Resist Updat ; 49: 100681, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014648

RESUMO

The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Química Farmacêutica , Desenho de Fármacos , Descoberta de Drogas , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/patologia , Relação Estrutura-Atividade
17.
Sci Rep ; 9(1): 6335, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004115

RESUMO

To further investigate the bacterial community and identify the bacterial biomarkers between venom secretion and non-venom secretion snakes, 50 intestinal samples (25 large intestine, 25 small intestine) were obtained from 29 snakes (13 gut samples from Deinagkistrodon, 26 from Naja and 11 from Ptyas mucosa). 16S rDNA high-throughput sequencing results showed that 29 bacterial phyla, 545 bacterial genera, and 1,725 OTUs (operational taxonomic units) were identified in these samples. OTU numbers and the Ace, Chao, Shannon, and Simpson indexes were very similar among the three breeds of snakes included in this study. The Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were predominant bacterial phyla. The relative abundance at the phylum level among these samples was similar, and the difference between small and large intestinal samples was not obvious. However, at the genus level, venom secretion snakes Deinagkistrodon and Naja clustered together according to different breeds. 27, 24, and 16 genera were identified as core microbes for Deinagkistrodon, Naja, and Ptyas mucosa, respectively. Interestingly, the relative abundances of genera Hafnia_Obesumbacterium, Providencia, and Ureaplasma were found to be significantly higher in non-venom secretion snakes, and the genera Achromobacter, Cetobacterium, Clostridium innocuum group, Fusobacterium, Lachnoclostridium, Parabacteroides, and Romboutsia were only detected in venom secretion snakes. The function of these bacteria in venom secretion needs to be further studied, and these venom secretion related genera may be the promising target to improve venom production.


Assuntos
Bactérias , Microbioma Gastrointestinal , Serpentes/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Especificidade da Espécie
18.
Int J Biol Sci ; 15(2): 416-429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745831

RESUMO

To obtain insight into the function of miRNAs in the synthesis and storage of important nutrients during the development of Camellia oleifera fruit, Illumina sequencing of flower and fruit small-RNA was conducted. The results revealed that 797 miRNAs were significantly differentially expressed between flower and fruit samples of Camellia oleifera. Through integrated GO and KEGG function annotations, it was determined that the miRNA target genes were mainly involved in metabolic pathways, plant hormone signal transduction, fruit development, mitosis and regulation of biosynthetic processes. Carbohydrate accumulation genes were differentially regulated by miR156, miR390 and miR395 in the fruit growth and development process. MiR477 is the key miRNA functioning in regulation of genes and involved in fatty acid synthesis. Additionally, miR156 also has the function of regulating glycolysis and nutrient transformation genes.


Assuntos
Camellia/química , Frutas/metabolismo , MicroRNAs/metabolismo , RNA de Plantas/genética , Flores/genética , Flores/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Microscopia Eletrônica de Varredura
19.
Bioresour Technol ; 265: 119-127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29885497

RESUMO

The aim of this work was to investigate the environmental performance of different tobacco stalk methods using Life Cycle Assessment (LCA). Three scenarios were established: biodegradable plant nursery tray (PNT) making, open burning, and indoor incineration. The results showed that 3380, 1590, 1320 kg CO2-eq, 25.7, 1.97,1.99 kg SO2-eq are generated for global warming and acidification in biodegradable PNT making, open burning, and indoor incineration scenarios respectively. The overall environmental impact for biodegradable PNT making is higher than that of open burning, and indoor incineration. The dominant factors contributing to environmental impact in biodegradable PNT making include electricity consumption, solid waste landfill etc. Through technical optimization, the environmental impact of biodegradable PNT making could be reduced greatly. Biodegradable PNT making with tobacco stalk, which follows the cyclic economy principles of maximum material utilization and waste minimization, provides an alternative for agricultural residue utilization.


Assuntos
Eliminação de Resíduos , Incineração , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Gerenciamento de Resíduos
20.
Bioresour Technol ; 264: 148-153, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29800775

RESUMO

In this study, biobutanol production from glucose, starch and food waste by newly identified Clostridium sp. strain HN4 was comprehensively investigated, which is capable of secreting amylase indigenously for the following acetone-butanol-ethanol fermentation. With pH adjustment, strain HN4 could produce 5.23 g/L of butanol from 60 g/L of starch with secretion of 1.95 U/mL amylase through consolidated bioprocessing. Further supplementation of 3 g/L of CaCO3 and 0.5% non-ionic surfactant of Tween 80 could stimulate both amylase activities and the final butanol titer, leading to 17.64 g/L of butanol with yield of 0.15 g/g. Fed batch fermentation integrated with in situ removal could further improve the butanol titer to 35.63 g/L with yield of , representing the highest butanol production and yield from food waste. These unique features of Clostridium sp. strain HN4 could open the door to the possibility of cost-effective biobutanol production from food waste on a large scale.


Assuntos
Biocombustíveis , Butanóis , Clostridium , 1-Butanol , Acetona , Etanol , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...